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Sheet-like thermal plumes are investigated using time-dependent and three-
dimensional flow fields obtained from direct numerical simulations and well-resolved
large-eddy simulations of turbulent Rayleigh–Bénard convection in water (Prandtl
number Pr = 5.4) in a cylindrical container with the aspect ratio Γ = 1 and for the
Rayleigh numbers Ra = 2 × 109 and 2 × 1010.

To analyse quantitatively the physical properties of the sheet-like thermal
plumes and the turbulent background and to obtain the temperature threshold
which separates these two different flow regions, the temperature dependences of
the conditionally averaged local heat flux, thermal dissipation rate and selected
components of the velocity and vorticity fields are studied. It is shown that the sheet-
like plumes are characterized by high values of the local heat flux and relatively large
absolute values of the vertical components of the vorticity and velocity fields. The
borders of these plumes are indicated by large values of the thermal dissipation rate
and large absolute values of the horizontal vorticity components. In contrast to the
sheet-like thermal plumes, the turbulent background is characterized by low values
of the thermal dissipation rate, local heat flux and vertical vorticity component. The
highest values of the local heat flux and the highest absolute values of the vertical
vorticity component are found in the regions where the sheet-like plumes strike
against each other. Fluid swirling at these places forms the stems of the mushroom-
like thermal plumes which develop in the bulk of the Rayleigh–Bénard cell.

Further, formulae to calculate the curvature, thickness and length of the plumes are
introduced. Geometrical properties such as plume area, diameter, curvature, thickness
and aspect ratio together with the physical properties of the sheet-like plumes such as
temperature, heat flux, thermal dissipation rate, velocity and vorticity are investigated.

1. Introduction
The subject of most of the fundumental thermal convection studies is the classical

Rayleigh–Bénard convection (RBC) (see, for example, Siggia 1994; Grossmann &
Lohse 2000; Kadanoff 2001; Verzicco & Camussi 2003; Ahlers 2005; Hartlep,
Tilgner & Busse 2005; Shishkina & Wagner 2007b; du Puits et al. 2007). Inside
a Rayleigh–Bénard cell, turbulent motion of the fluid develops if the temperature
difference between a heated bottom plate and a cooled top plate of the container
is large enough. Flow visualizations in experimental studies of turbulent RBC using
various fluids revealed large coherent structures which have a mushroom-like form,
when viewed from the side (Sparrow, Husar & Goldstein 1970; Zocchi, Moses &
Libchaber 1990; Xi, Lam & Xia 2004) and a sheet-like form when viewed from above
(Funfschilling & Ahlers 2004; Haramina & Tilgner 2004; Puthenveettil & Arakeri
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2005). These structures are called thermal plumes. The thermal plumes play an
important role in stellar convection. They are observed at the top of the convection
zones (see, for example, Zahn 2000) as flow structures desending towards the hot
centres of the stars.

Because of the temperature difference between these large flow structures and the
surrounding fluid and, hence, owing to different refractive indices in these parts of
the fluid, the thermal plumes become visible. Although the thermal plumes can be
seen easily in experiments, the problem of their extraction is not satisfactorily solved.
Thresholds of certain quantities such as the temperature (Zhou & Xia 2002) and/or
the vertical velocity (Juliem et al. 1999; Ching et al. 2004), the skewness of the
temperature derivative (Belmonte & Libchaber 1996) or the local thermal dissipation
rate (Shishkina & Wagner 2006) have been used for plume identification so far. A
proper choice of the threshold value which separates explicitly the large coherent
structures from the background fluid still remains one of the unresolved problems.

The thermal plume lifecycle has been one of the main subjects of recent studies of
turbulent RBC (Puthenveettil & Arakeri 2005). Generally, the plumes are generated
in the thermal boundary layers close to the bottom or the top plate and are driven to
the opposite plate by buoyancy. In the bulk the thermal plumes have a mushroom-
like form, while at the borders between the boundary layers and the bulk or slightly
deeper in the bulk are situated the sheet-like roots (or ‘mycelium theads’) of the
plumes (Shishkina & Wagner 2006). Xi et al. (2004) showed by experiment that for
high Rayleigh numbers and relatively small aspect ratios of the Rayleigh–Bénard
cells, the thermal plumes initiate the large-scale motion evolution.

Zhou, Sun & Xia (2007) studied turbulent RBC in water and showed that the
area of the sheet-like plumes exhibits log-normal distribution. The plume extraction
was conducted manually and was based on temperature thresholds. This study also
revealed that the sheet-like thermal plumes move across the plate, interact and
merge to generate the mushroom-like plumes. The regions of these sheet-like plume
interactions are characterized by large values of the vertical vorticity. This was also
assumed in the work by Cortese & Balachandar (1993), who performed numerical
simulations of RBC for the Rayleigh number of order 107.

In the present paper, we propose an approach for the numerical investigation of
the sheet-like thermal plumes. We consider the same values of the Rayleigh number
(Ra = 2 × 109 and 2 × 1010), Prandtl number (Pr = 5.4) and the aspect ratio (Γ = 1)
as realized by Zhou et al. (2007) in their experiments. To extract the sheet-like plumes
we use temperature thresholds which are defined based on the analysis of the thermal
dissipation rates.

The paper is organized as follows. In § 2, the governing equations and their
dimensionalization are presented together with some details on the numerical method.
The problem of the sheet-like plume extraction is discussed in § 3. In § 4, geometrical
properties such as area, curvature, thickness, length and aspect ratio of the sheet-like
plumes are defined and investigated. Physical characteristics of the plumes, i.e. tem-
perature, velocity, vorticity, heat flux and thermal dissipation rate, are discussed in § 5.

2. Governing equations and simulations parameters
The governing momentum, energy and continuity equations for the Rayleigh–

Bénard problem in Boussinesq approximation can be written, respectively, as follows

ût + û · ∇û + ρ−1
0 ∇p̂ = ν�û + αg(T̂ − T̂0)ez, (2.1a)

T̂t + û · ∇T̂ = κ�T̂ , (2.1b)

∇ · û = 0, (2.1c)
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where û is the velocity vector-function, T̂ the temperature, ût and T̂t their time
derivatives, p̂ the pressure, ρ0 the density and ez the unit vector in the vertical
direction. On substituting the factorization v̂ = vref v for each dimensioned variable

v̂ in (2.1), where v is a dimensionless variable and vref the reference value, x̂ref = D̂,

ûref = (αgD̂ δT̂ )1/2, t̂ref = x̂ref /ûref , T̂ref = δT̂ , p̂ref = û2
ref ρ0, we obtain the following

system of dimensionless three-dimensional equations in a cylindrical domain Υ with
the diameter D = 1 and the height H = Γ −1:

ut + u · ∇u + ∇p = µ�u + T ez, (2.2a)

Tt + u · ∇T = µPr−1�T, (2.2b)

∇ · u = 0, (2.2c)

with µ = Γ −3/2Ra−1/2Pr1/2. The dimensionless temperature varies between T |z=0 =
+0.5 at the bottom and T |z=H = −0.5 at the top horizontal walls and satisfies ∂T /∂n =
0 on the vertical walls, where n is the normal vector. According to the impermeability
and no-slip conditions, the velocity field vanishes on the boundary, i.e. u|∂Υ = 0.

To investigate sheet-like thermal plumes, we simulated turbulent Rayleigh–Bénard
convection in a fluid with Prandtl number Pr = 5.4 which corresponds to water.
The aspect ratio of the cylindrical container equals Γ =1 and the considered
Rayleigh numbers are 2 × 109 and 2 × 1010. The simulations were performed with the
fourth-order-accurate finite-volume method developed for solving (2.2) in cylindrical
coordinates (z, ϕ, r) on staggered structured non-equidistant grids (Shishkina &
Wagner 2007a).

The computational mesh used in the simulations consists of 220 × 512 × 96 nodes
in the vertical, azimuthal and radial directions, respectively. The mesh nodes are
distributed equidistantly in the azimuthal direction and are clustered in the vicinity
of the rigid walls to resolve the viscous and thermal boundary layers. For the case
Ra = 2 × 109, the mesh satisfies the spatial resolution requirements by Grötzbach
(1983) both in the bulk and in the vicinity of the rigid walls and, hence, it is fine
enough to resolve all relevant turbulent scales in the direct numerical simulation
(DNS). This is the case for the following reasons.

According to Grötzbach (1983), the computational mesh used in the DNS must
satisfy the following requirement

hVi
� πηVi

(Ra) min{1; Pr−3/4} (2.3)

on each finite volume Vi , where hVi
= (�zi ri�ϕi �ri)

1/3 is the mesh width and

ηVi
(Ra) = µ3/4ε−1/4

u

denotes the Kolmogorov scale on this finite volume. Here εu is the turbulent kinetic
energy dissipation rate, which in Cartesian coordinates reads

εu =
µ

2

∑ (
∂u

′

i

∂xj

+
∂u

′

j

∂xi

)2

with u
′

i the fluctuation of the velocity component ui with respect to the mean velocity
field. In the case Pr = 5.4, the requirement (2.3) can be rewritten as

hVi

ηVi
(Ra)

� πPr−3/4 ≈ 0.887. (2.4)

Close to the rigid walls the ηVi
(Ra)-values and, hence, the required mesh width are

small, while in the bulk they are relatively large. In figure 1, the computational mesh
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Figure 1. (a) Spatial distribution of the ratio between the mesh width hVi
and the Kolmogorov

scale ηVi
for the case Ra = 2 × 109, Pr =5.4 and Γ = 1, hVi

/ηVi
� 0.64; (b, c) close-up views

(50-times zoom) together with superimposed computational mesh; (d) colour scale for hVi
/ηVi

.

in the radial r- and axial z-directions is presented together with the distribution of the
ratio between the mesh width and the Kolmogorov scale, i.e. the function hVi

/ηVi
in

these directions as it was evaluated from the numerical data for Ra = 2 × 109. We can
see that the highest values of hVi

/ηVi
are located in the vicinity of the vertical wall.

Although in the case Ra = 2 × 109 the requirement (2.4) of the mesh applicability in
the DNS is fulfilled, since

max
Vi

hVi
/ηVi

(2 × 109) � 0.64,

the inequality (2.4) fails for Ra =2 × 1010, since maxVi
hVi

/ηVi
(2 × 1010) = 1.36 in this

case. Therefore to simulate turbulent RBC for Ra = 2 × 1010 we conducted a large-
eddy simulation (LES) using the tensor-diffusivity subgrid scale model by Leonard &
Winckelmans (1999). According to this model, the subgrid scale stress tensors are
approximated by the first term of the exact series expansions for filtered products.
For further details on the numerical method and the subgrid modelling used in the
simulations, we refer to Shishkina & Wagner (2007c).

In figures 2 and 3, the instantaneous temperature distribution −0.5 � T � 0.5
is visualized for the case Ra = 2 × 109, Pr = 5.4, Γ = 1 in a central vertical plane
(figure 2a) and in horizontal cross-sections (figure 3) at distances z = H/Nu , z = H/2
and z = H (1 − 1/Nu) from the top plate. These figures give an impression of the
complicated three-dimensional flow structures which develop in turbulent RBC. In
figures 3(a) and 3(c) (as well as in figure 9) small wave-like structures are observed,
which develop near the sheet-like thermal plumes and replicate their form. These
structures do not correlate with the mesh used in the simulations and the associated
wavelength is up to 10 times larger than the mesh width in these regions. Therefore
we conclude that they reflect some physical effects for which we have no explanation
so far.

Further, in figure 2(b, c) snapshots of the vertical component of the velocity and
the local heat flux distributions are presented. The snapshot of the vertical velocity
(figure 2b) reflects a large-scale circulation which developes in turbulent RBC for high
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(a) (b)

(c)

Figure 2. Snapshots of (a) the temperature field −0.5 � T � 0.5 with superimposed velocity
vectors, (b) the vertical velocity −0.3 � uz � 0.3 and (c) the local heat flux for Ra = 2 × 109,
Pr = 5.4, Γ = 1 in a central vertical cross-section. The colour scale ranges from blue (negative
values) through white (zero) to red (positive values).

(a) (b) (c)

Figure 3. Snapshots of the temperature field for Ra =2 × 109, Pr = 5.4, Γ = 1 in horizontal
cross-sections at distances (a) z = H/Nu , (b) z = H/2 and (c) z =H −H/Nu from the top plate.
The colour scale is as figure 2.

Rayleigh numbers and Γ = 1. Comparing figure 2(a) with figure 2(c), we conclude
that in the vertical cross-sections, large values of the local heat flux correspond
generally to the thermal plumes.

Evaluating the Nusselt number

Nu = Γ 1/2Ra1/2Pr1/2〈uzT 〉t,Sz
− Γ −1

〈
∂T

∂z

〉
t,Sz

,

where 〈·〉t,Sz
denotes time- and area-averaging over any (ϕ, r)-plane Sz at distance z

from the top plate, we obtained Nu = 81 ± 1.2% (Ra = 2 × 109) and Nu =210 ± 2.3%
(Ra = 2 × 1010). The statistical averaging of the data was conducted for 101 and
75 dimensionless time units in the former and in the latter cases, respectively. The
obtained values agree well with those obtained from the scaling law Nu = (0.19 ±
0.01)Ra0.28±0.06 derived by Lui & Xia (1998) and Shang et al. (2004) from their
experimental data. The Nusselt numbers obtained in the simulations for Ra = 2 × 109

are also in good agreement with measurements by Funfschilling et al. (2005) for
Pr = 4.38 and Γ = 1. For higher Rayleigh numbers, the LES predicts Nusselt numbers,
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Figure 4. Probability density functions of the temperature, evaluated for (a) Ra = 2 × 109

and (b) Ra = 2 × 1010, Pr = 5.4, Γ = 1 and distances z = 0.5H/Nu (——), z = H/Nu (– – –),
z = H/2 (——• ), z = H (1 − 1/Nu) (- - -) z =H (1 − 0.5/Nu) (– · –) from the top plate.

which exceed those obtained in experiments using relatively small containers. For
example, in measurements by Funfschilling et al. (2005), non-Oberbeck–Boussinesq
effects are present, since the considered temperature differences between the bottom
and the top plates are higher than those of the region of validity of the Boussinesq
approximation for water (see Gray & Giorgini 1976). These non-Oberbeck-Boussinesq
effects lead to lower Nusselt number (see Ahlers et al. 2006) in comparison to the
Boussinesq case considered in numerical simulations if the operating fluid is water.
Although the simulated mean heat flux is sensitive to the subgrid scale model used
in LES, in the well-resolved LES this influence is insignificant.

3. Sheet-like plumes extraction
The absolute temperature inside the sheet-like thermal plumes is higher than that

of the background fluid. Based on this temperature difference, the plumes can be
distinguished from the surrounding fluid.

Zhou et al. (2007), who investigated turbulent RBC in water for Ra = 2 × 109 and
Pr = 5.4, used thermochromic liquid crystal microspheres to visualize the sheet-like
plumes in horizontal cross-sections of the cylindrical Rayleigh–Bénard cell. They
were able to estimate the temperature values analysing 31% of the temperature scale
which corresponds to the temperature-sensitive colour range of the particles. In our
numerical simulations, the complete temperature and velocity fields are obtained and
are available in all points of the domain. The probability density functions (p.d.f.) of
the temperature evaluated for Ra = 2 × 109 and 2 × 1010, Pr = 5.4, Γ = 1 and different
distances from the top plate are shown in figure 4. The p.d.f.s encompass all the
data from each considered cross-section. We can see that the observed temperature
range is contracting with increasing distance from the horizontal plates. Although the
temperature p.d.f. over the whole Rayleigh–Bénard cell is a symmetric function with
respect to T = 0, the temperature p.d.f. over a horizontal cross-section is generally
non-symmetric. The graphs of the temperature p.d.f. for any horizontal cross-sections
at distances z and (H − z) from the top plate are reflection symmetric with respect
to T = 0. The peak-like shape of the temperature p.d.f. in the centre horizontal
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cross-section is associated with the uniformity of the background in the bulk, while
the skewed distribution near the horizontal plates reflects the preponderance of the
thermal plumes in these regions.

Further, to determine the temperature threshold which separates the sheet-like
plumes from the background fluid we investigate the dependences on the temperature
of conditionally averaged quantities, such as convective vertical heat flux

θ = Γ 1/2Ra1/2Pr1/2uzT − Γ −1 ∂T

∂z
,

thermal dissipation rate

εθ = Γ −3/2Ra−1/2Pr−1/2(∇T )2,

velocity and vorticity in the vertical and horizontal directions. In a fixed horizontal
cross-section Sz of the Rayleigh–Bénard cell and a certain temperature interval
[Tk, Tk+1[ the conditionally averaged value ϕ(Tk � T < Tk+1) of a certain quantity ϕ is
obtained by averaging ϕ in time and over those parts of Sz, which correspond to the
temperature interval [Tk, Tk+1[, as follows

ϕ(Tk � T < Tk+1) =
C 〈ϕ ϑ(Tk � T < Tk+1)〉t,Sz

〈ϑ(Tk � T < Tk+1)〉t,Sz

,

where C denotes a certain normalizing constant and

ϑ(Tk � T < Tk+1) = H(T − Tk) − H(T − Tk+1),

with H(x) the Heaviside function, i.e. H(x) = 1 if x � 0 and H(x) = 0 otherwise.
Thus, in the temperature interval [Tk, Tk+1[ the conditionally averaged values of the

vertical velocity uv , the absolute value of the horizontal velocity |uh|, the heat flux

θ , the thermal dissipation rate εθ and the absolute values of the vertical |ωv| and

horizontal |ωh| vorticities are calculated as follows

uv = Cu 〈uv ϑ〉t,Sz
〈ϑ〉−1

t,Sz
,

|uh| = Cu 〈|uh| ϑ〉t,Sz
〈ϑ〉−1

t,Sz
,

θ = Cθ 〈θ ϑ〉t,Sz
〈ϑ〉−1

t,Sz
,

εθ = Cεθ
〈εθ ϑ〉t,Sz

〈ϑ〉−1
t,Sz

,

|ωv| = Cω 〈|ωv| ϑ〉t,Sz
〈ϑ〉−1

t,Sz
,

|ωh| = Cω 〈|ωh| ϑ〉t,Sz
〈ϑ〉−1

t,Sz
,

with normalizing constants Cu, Cθ , Cεθ
and Cω.

In figure 5, the conditionally averaged values of the vertical velocity component,
the absolute value of the horizontal velocity component, the heat flux, the thermal
dissipation rate and the absolute values of the vertical and horizontal vorticity
components are presented. The values were obtained from the numerical data for
Ra = 2 × 109 and 2 × 1010, Pr = 5.4, Γ = 1 and different distances from the top plate.
Here the bin width is 0.02 and the normalizing constants Cu, Cθ , Cεθ

and Cω equal,
respectively,

Cu = min{cuv
, c |uh|},

Cθ = cθ ,

Cεθ
= cεθ

,

Cω = min{c |ωv |, c |ωh|}
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Figure 5. Conditionally averaged values of the vertical velocity component (a, d), the absolute
value of the horizontal velocity component (b, e), heat flux (c, f ), thermal dissipation rate (g, j ),
absolute values of the vertical (h, k) and horizontal (i, l) vorticity components, evaluated
for Ra =2 × 109 (a–c, g–i) and Ra = 2 × 1010 (d–f, j–l), Pr =5.4, Γ = 1 and distances
z = 0.5H/Nu (——), z =H/Nu (– – –), z =H/2 (——• ), z = H (1−1/Nu) (- - -) z =H (1−0.5/Nu)
(– · –) from the top plate.
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with

cϕ =

(
max

z∈[0,H ]
max

T ∈[−0.5,0.5]

{
〈ϕ ϑ〉t,Sz

〈ϑ〉−1
t,Sz

})−1

.

Figure 5 reflects the dependencies of the above presented quantities on the
temperature. For example, the conditionally averaged vertical velocity component is
positive (or negative) for positive (or negative) values of the temperature (figure 5a, d).
Just like the probability density functions for the temperature (figure 4) the graphs of
the conditionally averaged quantities (figure 5) for any distances z and (H − z) from
the top plate look reflection symmetric with respect to T = 0.

While relatively large absolute values of the temperature in figure 5 correspond to
the interior of the sheet-like thermal plumes, the regions with the temperature values
around zero are associated with the background fluid. Without fixing the temperature
threshold which separates the sheet-like plumes from the surrounding fluid, we can
give the following qualitative description of the physical properties of these two
different parts of fluid, i.e. the sheet-like plumes and the turbulent background. The
interior of the sheet-like thermal plumes and the background fluid are indicated,
respectively, by large and small absolute values of the vertical velocity component
(figure 5a, d), the local heat flux (figure 5c, f ) and the vertical vorticity component
(figure 5h, k). In contrast to the vertical velocity component, large absolute values of
the horizontal velocity component are obtained outside the sheet-like plumes, while
inside the plumes these values are relatively small (figure 5b, e). The turbulent back-
ground is also indicated by small values of the thermal dissipation rate (figure 5g, j ).

Finally, we address the question of which temperature threshold separates the sheet-
like thermal plumes from the turbulent background and indicates the borders of the
sheet-like plumes. Considering the solid lines in figure 5 which correspond to the
border between the upper cold thermal boundary layers and the bulk (z = 0.5H/Nu),
we can see that within the temperature interval −0.35 � T � 0 which includes the
desired temperature threshold, most of the considered characteristics such as the
conditionally averaged vertical (figure 5a, d) and horizontal (figure 5b, e) velocity
components, heat flux (figure 5c, f ) or vertical vorticity component (figure 5h, k)
have an almost monotonous dependency on the temperature. These quantities do not
change qualitatively within the interval −0.35 � T � 0. Therefore they cannot provide
the threshold we are looking for.

On the border between the upper cold thermal boundary layer and the bulk
(z = 0.5H/Nu), the conditionally averaged thermal dissipation rate (figure 5g, j )
has a well-pronounced extremum within the temperature interval T ∈ [−0.35, 0],
which corresponds to the temperature T = T −

thr (z). This means that the temperature
T = T −

thr (z) corresponds generally to the maximum value of the conditionally averaged
thermal dissipation rate, i.e. to the borders between the sheet-like plumes and the
surrounding fluid in the horizontal cross-section Sz at a distance z = 0.5H/Nu from
the top plate. Therefore to extract the sheet-like plumes at the border between
the upper cold thermal boundary layer and the bulk, we can use the temperature
threshold T = T −

thr (z). Analogously, at the border between the lower warm boundary
layer and the bulk (z = H − 0.5H/Nu), the desired temperature threshold T = T +

thr (z)
corresponds to the maximum value of the conditionally averaged thermal dissipation
rate within the interval T ∈ [0, 0.35]. For the case Ra = 2 × 109, Pr = 5.4 and Γ =1
we found T −

thr (0.5H/Nu) ≈ −0.18 and T +
thr (H − 0.5H/Nu) ≈ 0.18.

Another important observation is that within the interval T ∈ [−0.35, 0], the
conditionally averaged absolute value of the horizontal vorticity component has
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its maximum close to T = T −
thr (figure 5i, l). This means that in the vicinity of the

sheet-like thermal plumes, the absolute values of the horizontal vorticity component
are high. Thus, large absolute values of the horizontal vorticity component indicate
the borders of the sheet-like thermal plumes not only close to the horizontal plates,
but also deeper in the bulk.

While moving away from the plates (z = 0 or z = H ) towards the bulk (up to
z = H/Nu or z = H (1 − 1/Nu), respectively) the conditionally averaged absolute
values of all components of the velocity field (figure 5a, b, d, e), the local heat flux
(figure 5c, f ) and the vertical vorticity component (figure 5h, k) generally increase,
while the conditionally averaged thermal dissipation rate (figure 5g, j ) and absolute
value of the horizontal vorticity component (figure 5i, l) decrease.

4. Geometrical properties of the sheet-like plumes
Warm and cold sheet-like thermal plumes are identified as geometrical objects

in any horizontal cross-sections Sz at a distance z from the top plate as simply
connected subdomains of Sz, restricted by the plume temperature thresholds T +

thr and
T −

thr , respectively, as follows

P+ = {(x, y) ∈ Sz : T (x, y) ∈ [T +
thr , 0.5]}, z � H/2,

and

P− = {(x, y) ∈ Sz : T (x, y) ∈ [−0.5, T −
thr ]}, z � H/2.

Here the vertical coordinate z and time t are omitted.
According to § 3, at the borders between the boundary layers and the bulk

(z =0.5H/Nu and z =H − 0.5H/Nu , respectively) the temperature thresholds T −
thr

and T +
thr are defined as points of maximum conditionally averaged thermal dissipation

rate in Sz (see figure 5g, solid line). In the bulk, the point of the local maximum of
the conditionally averaged horizontal vorticity component (figure 5i) or any other
reasonable temperature threshold can serve as T

±
thr . For example, at distance z = H/Nu

from the top plate (figure 5) the graphic of the conditionally averaged thermal
dissipation rate (figure 5g) is almost flat within the interval T ∈ [−0.35, −0.14] and
dramatically decreases for T ∈ ]−0.14, 0]. At the same distance from the top plate the
conditionally averaged horizontal vorticity component (figure 5i) has its maximum
within the interval T ∈ [−0.14, −0.12]. Therefore we select the temperature thresholds
T −

thr (H/Nu) = −0.14 and T +
thr (H − H/Nu) = 0.14 to extract sheet-like thermal plumes

in the cross-sections Sz at distances z =H/Nu and z = H − H/Nu from the top plate.
In figure 6, the extracted cold sheet-like plumes which are obtained using the plume

temperature threshold T −
thr = −0.14 at distance z = H/Nu from the top plate for the

case Ra =2 × 109, Pr =5.4, Γ = 1, are presented. In our plume analysis we consider
the sheet-like thermal plumes, the relative area of which,

AP = |P|/|Sz|,
is larger than 0.02%, where |P| and |Sz| denote the areas of P and Sz, respectively. In
figure 6, the sheet-like plumes, the relative area of which is less than 0.1%, are also
omitted. The total number of the plumes extracted at fixed time in the cross-section
Sz is denoted by NP and is 28 in the example considered in figure 6.

We define the plume diameter DP as the maximum distance between any two points
in P,

DP = max
(x1,y1)∈P, (x2,y2)∈P

((x1 − x2)
2 + (y1 − y2)

2)1/2,
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Figure 6. Thermal plumes extracted for the case Ra = 2 × 109, Pr = 5.4, Γ = 1, T −
thr = −0.14

at distance z = H/Nu from the top plate. Colour scale is due to plume enumeration. For each
plume P the arrow goes from (x∗

2 , y
∗
2 ) to (x∗

1 , y
∗
1 ) and corresponds to the plume vector aP

(4.1); the other two lines match the points (x∗
2 , y

∗
2 ) and (x∗

1 , y
∗
1 ) with the most distant point

(x, y) ∈ P.

which varies between 0 and 1 (see figure 7 for a sketch of a sheet-like thermal plume
and its geometrical characteristics).

The plume vector

aP = (x∗
1 − x∗

2 , y
∗
1 − y∗

2 ) (4.1)

matches the most distant points in the plume (x∗
1 , y

∗
1 ) ∈ P and (x∗

2 , y
∗
2 ) ∈ P, the

coordinates of which satisfy the following equality

((x∗
1 − x∗

2 )
2 + (y∗

1 − y∗
2 )

2)1/2 = DP.

The vector product ey × aP of the unit ordinate vector ey (vertical direction in figure 6)
and the plume vector aP points upward. Thus, the angle ϕP between the plume vector
aP and the unit ordinate vector ey varies in the interval [0, π]. The plume direction
and its diameter are determined, respectively, by the direction and the length of the
vector aP.

To determine the curvature of the plume P we consider each non-degenerate
triangle with the vertices (x, y) ∈ P, (x∗

1 , y
∗
1 ) and (x∗

2 , y
∗
2 ) and the side lengths DP and

DP,β =
(
(x∗

β − x)2 + (y∗
β − y)2

)1/2
(β = 1, 2).
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Figure 7. Sketch of a sheet-like thermal plume P (given in grey) with the thickness δP,
diameter DP, curvature KP and plume angle ϕP.

The plume curvature KP,

KP = |P|−1

∫
P

kP(x, y) dP,

is defined then as the quantity kP(x, y) averaged over the sheet-like plume P, where
the value of kP(x, y) is inversely proportional to the circumradius of the considered
triangle,

|kP(x, y)| = D−1
P D−1

P,1D
−1
P,2((DP + DP,1 + DP,2)(−DP + DP,1 + DP,2)

× (DP − DP,1 + DP,2)(DP + DP,1 − DP,2))
1/2.

The quantity kP(x, y) is positive only if the point (x, y) is situated on the right-hand
side of the plume vector aP, i.e.

(x∗
1 − x∗

2 )(y − y∗
2 ) < (x − x∗

2 )(y
∗
1 − y∗

2 ),

and non-positive otherwise. Generally, the absolute value of the plume curvature
KP does not exceed 2D−1

P . The curvature of a straight-line plume is equal to zero,
while that of a plume with the shape replicating the boundary of the horizontal
cross-section Sz is equal to ±2.

Further, we consider the isosceles triangle with the vertices (x∗
1 , y

∗
1 ), (x∗

2 , y
∗
2 ) and the

circumcentre of the considered plume. The apical angle αP of this triangle equals

αP = arccos

(
1 − (KPDP)2

2

)
.

Using the apical angle αP, we can estimate the plume length lP and the plume
thickness δP as follows

lP = αP|KP|−1,

δP = α−1
P |KP||P|.

The plume aspect ratio, i.e. the ratio between the plume length and its thickness, is

ΓP =
lP

δP
=

|P|
δ2

P
= α2

P|KP|−2|P|−1.

In table 1 the following geometrical characteristics of the sheet-like plumes depicted
in figure 6 are presented: the plume area AP, diameter DP, curvature KP, thickness δP,
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AP DP δP TP θP εθ,P uv,P uh,P
NP ×10−3 ×10−2 KP ×10−2 ΓP ϕP ×10−2 ×102 ×10−3 ×10−2 ×10−2 ωv,P ωh,P

1 1.26 8.7 10.2 1.40 6.4 139 −18.2 7.18 2.00 −3.62 2.46 1.38 2.06
2 1.40 14.6 −2.0 0.96 15.3 106 −17.9 7.54 2.20 −3.82 2.32 0.68 1.98
3 1.15 13.1 −11.7 0.77 19.4 72 −17.9 7.21 2.15 −3.62 2.50 0.45 1.98
4 5.07 31.7 −0.6 1.60 19.8 78 −18.9 7.49 2.47 −3.61 2.21 0.50 2.05
5 1.15 8.7 8.5 1.30 6.8 78 −19.0 7.12 1.97 −3.35 2.98 0.95 2.72
6 1.38 16.5 −1.3 0.83 19.8 10 −18.8 7.51 2.20 −3.63 4.82 1.43 2.52
7 14.10 64.1 1.6 2.09 32.3 26 −19.5 7.43 2.29 −3.42 2.42 0.88 2.25
8 1.27 11.3 −4.9 1.11 10.3 35 −20.0 10.90 2.03 −4.87 6.44 2.95 3.12
9 1.13 14.3 4.4 0.77 18.9 29 −17.7 7.01 1.81 −3.65 6.87 1.16 2.90

10 0.95 9.5 15.1 0.90 11.8 104 −18.6 8.21 1.97 −3.96 2.02 0.63 2.10
11 1.34 14.9 −6.2 0.87 17.8 25 −17.6 7.17 1.87 −3.64 4.18 0.58 2.02
12 1.06 10.3 −5.7 1.02 10.2 91 −18.3 6.64 1.98 −3.27 4.54 0.42 2.47
13 2.98 19.3 7.3 1.39 15.4 143 −17.9 6.33 1.60 −3.18 2.40 0.64 2.08
14 5.22 21.7 −2.8 2.36 9.4 19 −20.2 8.03 2.46 −3.55 3.20 0.65 2.28
15 5.89 31.0 −0.5 1.90 16.4 150 −19.1 6.63 2.28 −3.18 0.92 0.83 1.93
16 9.79 50.3 0.4 1.94 25.9 167 −19.6 8.26 2.90 −3.84 1.72 0.56 2.23
17 2.25 11.6 −0.1 1.94 6.0 52 −20.5 8.66 2.40 −3.81 3.09 0.61 2.37
18 1.62 8.3 2.5 1.95 4.2 87 −19.5 10.67 1.84 −4.75 4.39 2.94 2.43
19 1.28 17.0 1.3 0.75 22.6 166 −19.8 5.87 3.03 −2.87 1.11 0.47 1.49
20 2.00 22.6 −3.2 0.87 26.6 111 −18.7 6.68 1.72 −3.30 2.62 0.54 2.77
21 1.11 13.7 12.0 0.69 23.0 140 −17.2 6.48 1.97 −3.46 4.13 0.41 2.09
22 0.90 16.4 4.4 0.54 31.1 71 −16.7 8.03 2.19 −4.46 4.63 0.81 1.86
23 6.94 36.9 −1.0 1.87 19.9 65 −19.3 7.14 2.59 −3.37 0.40 0.42 2.19
24 0.95 9.8 −0.9 0.97 10.1 147 −21.6 6.50 4.12 −2.74 2.88 1.10 2.03
25 1.03 19.2 1.8 0.53 36.4 39 −17.9 3.41 3.31 −1.76 0.46 0.73 1.65
26 1.13 10.9 9.7 0.98 11.6 61 −18.4 6.48 2.59 −3.28 3.21 0.49 2.11
27 1.04 11.7 −14.5 0.74 18.7 170 −17.6 7.30 1.89 −3.73 3.04 0.42 1.99
28 1.24 7.1 −1.9 1.75 4.0 172 −20.6 9.09 2.54 −3.82 1.59 0.43 2.02

Table 1. Plume characteristics due to their numeration NP for the case Ra = 2 × 109, Pr = 5.4,
Γ = 1, T −

thr = −0.14 at distance z = H/Nu from the top plate (see figure 6). AP denotes the area,
DP diameter, KP curvature, δP thickness, ΓP aspect ratio, TP temperature, θP heat flux, εθ,P
thermal dissipation rate, uv,P vertical velocity, uh,P absolute value of the horizontal velocity,
ωv,P absolute value of the vertical vorticity and ωh,P absolute value of the horizontal vorticity
and ϕP is the angle (in degrees) between the plume P and the ordinate axis.

aspect ratio ΓP and the angle ϕP between the plume and the ordinate axis. Comparing
different plumes in table 1 and figure 6 it is found that the plumes with large area
usually have a large diameter (for example, the plume number 7). The smallest plume
diameter (plume number 28) is 14 times smaller than the diameter of the considered
cross-section. The plume curvature is negative (plumes 3, 20, 27) or positive (plumes 9,
10, 22) if the plume is located mostly to the left or to the right of the plume vector
(see also figure 6). If the plume vector divides the plume into two relatively equal
parts, the plume curvature is close to zero (as for the plume number 17). The absolute
value of the plume curvature can be more than 7 times larger than the curvature of
the Rayleigh–Bénard cell (plumes 10 and 27). The plumes, which are located in the
vicinity of the cell boundary and almost replicate its form, have the absolute value
of the plume curvature close to 2 (as plume 25). Elongated plumes are usually rather
thin (as plumes 22 and 25) with a plume thickness which is up to 200 times smaller
than the diameter of the cell. For the plumes with a complicated form (as plume 14),
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the plume thickness can be relatively large. The plume aspect ratio can exceed 30
(as for plumes 7 and 25). The angle between the plume and the ordinate axis varies
within the interval [0, π] and no preferable value is observed.

In figure 8, the probability density functions of the logarithms of the plume area,
diameter, curvature, thickness and aspect ratio evaluated for Ra =2 × 109 and 2 × 1010,
Pr = 5.4, Γ =1 and distances z =0.5H/Nu , z = H/Nu , z = 0.5H , z = H − H/Nu and
z = H −0.5H/Nu from the top plate are presented. From the graphs of these quantities,
we can estimate the ranges of their possible values. Approximately 4.0 × 105 and
9.3 × 105 sheet-like thermal plumes were investigated in the cases Ra = 2 × 109 and
2 × 1010, respectively. In all graphs in figure 8 the bin widths equal 1/20 of the
considered intervals. The p.d.f. graphs of the plume area are ‘cut off’ from the left
(figure 8a, d), since the plumes that we consider have an area larger than 2 × 10−4.

Although the probability density functions of the plume area or plume aspect
ratio look like log-normal distributions, the graphics for the other obtained quantities
are non-symmetric (see, for example, p.d.f. of the plume curvature on figure 8c, f ).
With increasing distance from the horizontal plates in the regions z ∈ [0, H/Nu] and
z ∈ [H − H/Nu, H ] the ranges of the possible values for the plume area (figure 8d),
diameter (figure 8e), thickness (figure 8j ) and aspect ratio (figure 8k) decrease, while
that for the curvature (figure 8f ) increases.

The mean thickness of the sheet-like thermal plumes is equal to the thickness of
the thermal boundary layers in both cases considered, i.e. it is of order 0.5H/Nu .

5. Physical properties of the sheet-like plumes
The sheet-like plumes are generally characterized by high absolute values of

the temperature, vertical velocity component, local heat flux and vertical vorticity
component as was concluded from the analysis of conditionally averaged plume
characteristics in § 3. In this section, we investigate the sheet-like plumes in more
detail based on our DNS and LES data.

In figure 9, snapshots of the heat flux θ , thermal dissipation rate εθ and the vorticity
norm

ω =
(
ω2

x + ω2
y + ω2

z

)1/2

are presented for the case Ra = 2 × 109, Pr = 5.4, Γ = 1 in the horizontal cross-section
at distance z = H/Nu from the top plate. Here z is the vertical and x and y the
horizontal directions. These snapshots correspond to the instantaneous temperature
distribution presented in figure 3(a). Since the sheet-like thermal plumes are indicated
also by large values of the conditionally averaged heat flux (see figure 5c), the regions
of high absolute values of the temperature in figure 3(a) almost coincide with the
regions with large local heat flux in figure 9(a). The borders of the sheet-like thermal
plumes are reflected by high values of the thermal dissipation rate in figure 9(b). Large
values of the vorticity norm (see figure 9c) are also obtained close to the borders of
the sheet-like plumes owing to high absolute ωh values or even on the whole plume
body owing to relatively large absolute ωv values.

In figure 10, a snapshot of the vertical vorticity component ωv is presented for the
same case as in figure 9 together with superimposed velocity vectors. While moving
along the elongated sheet-like plume, we find negative values of the vertical vorticity
(shown in blue) on the right-hand side of the plume and positive values on the
left-hand side (shown in red). This is because the cold sheet-like plume, i.e. the part
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Figure 8. Probability density functions of the logarithms of the following geometrical
characteristics of the sheet-like thermal plumes: (a, d) area, (b, e) diameter, (c, f ) curvature,
(g, j ) thickness, (h, k) aspect ratio and (i, l) probability density function of the angle between the
plume direction and the horizontal component of its velocity vector, evaluated for Ra = 2 × 109

(a–c, g–i) and Ra = 2 × 1010 (d–f, j–l), Pr = 5.4, Γ =1 and distances z = 0.5H/Nu (——),
z = H/Nu (– – –), z = H − H/Nu (- - -) and z = H − 0.5H/Nu (– · –) from the top plate.
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(a) (b) (c)

Figure 9. Snapshots of (a) the heat flux θ , (b) thermal dissipation rate εθ and (c) the vorticity
norm ω for Ra = 2 × 109, Pr =5.4, Γ = 1 in the horizontal cross-section at distance z = H/Nu
from the top plate. The colour scale rages from white (zero) to black (positive values larger
than (a) 3Nu , (b) 0.1εθ,max and (c) 0.3ωmax ).

of the fluid restricted by the ‘red’ and ‘blue’ borders of the sheet-like plume, moves
towards the bottom of the Rayleigh–Bénard cell.

In figure 11, some of the plumes from figure 6 are presented together with the vor-
ticity vectors. We can see that on one border of any elongated sheet-like plume the
vorticity vector points along the plume, while on the opposite side of the plume the
vorticity vector points in the opposite direction. This shows that large absolute values
of the horizontal vorticity component usually indicate the borders of the sheet-like
plumes, as was shown in the analysis of the conditionally averaged horizontal vorticity
component in § 3.

Some of the sheet-like plumes collide with other plumes while moving in horizontal
directions. In this case, they merge and swirl to form the stems of the mushroom-
like plumes which develop in the bulk of the Rayleigh–Bénard cell. The regions of
their convolution are characterized by high absolute values of the vertical vorticity
component (see, for example, figure 11f ).

In table 1, the following physical characteristics of the plumes given in figure 6 are
presented: the plume temperature TP, local heat flux θP and thermal dissipation rate
εθ,P,

TP = |P|−1

∫
P

T (x, y) dP, θP = |P|−1

∫
P

θ(x, y) dP, εθ,P = |P|−1

∫
P

εθ (x, y) dP,

the plume vertical velocity component uv,P and absolute value of the horizontal
velocity component uh,P,

uv,P = |P|−1

∫
P

uz(x, y) dP, uh,P = |P|−1

∫
P

(
u2

x(x, y) + u2
y(x, y)

)1/2
dP,

together with the absolute values of the vertical ωv,P and horizontal ωh,P vorticity
components, calculated as follows

ωv,P = |P|−1

∫
P

|ωz(x, y)| dP, ωh,P = |P|−1

∫
P

(
ω2

x(x, y) + ω2
y(x, y)

)1/2
dP.

From table 1, it can be concluded that the largest values of the plume heat flux are
obtained for the plumes with highest absolute values of the vertical components of
the velocity and vorticity. These are the swirling plumes 8 and 18 which serve in the
bulk as the stems of the mushroom-like plumes.
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(a) (b) (c)

Figure 10. A snapshot of the vertical vorticity ωv for Ra =2 × 109, Pr = 5.4, Γ = 1 (a) in
horizontal cross-section at distance z = H/Nu from the top plate and (b, c) its close-up views
with superimposed velocity vectors. The colour scale ranges from blue (negative values) through
white (zero) to red (positive values).

(a) (b) (c)

(d) (e) (f )

Figure 11. Close-up views of the sheet-like thermal plumes numbered (a) 14, (b) 20, (c) 23,
(d) 8 and 9, (e) 2 and 4, (f ) 15 and 18 from figure 6 with superimposed vorticity vectors. The
colour scale is as figure 6.

In figure 8(i, l) the probability density functions of the angle between the plume
vector and the plume velocity in the horizontal direction are presented. We can see
that at the distances z =N/Nu and z = H − H/Nu from the top plate, this angle is
close to zero for most of the cases. Thus, in this horizontal cross-section the fluid
inside the sheet-like plumes moves predominantly along the plumes.

We supplement our investigation of the sheet-like plumes by evaluation of the
probability density functions of the sheet-like plume temperature, heat flux, logarithm
of the thermal dissipation rate (figure 12), horizontal and vertical velocity components
(figure 13a–f ) and logarithms of the absolute values of the horizontal and vertical
vorticity components (figure 13g–l), obtained for Ra = 2 × 109 and 2 × 1010, Pr =5.4,
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Figure 12. Probability density functions of the following characteristics of the sheet-like
thermal plumes: (a, d) temperature, (b, e) heat flux and (c, f ) logarithm of the thermal
dissipation rate, evaluated for Ra = 2 × 109 (a–c) and Ra = 2 × 1010 (d–f ), Pr = 5.4, Γ = 1 and
distances z = 0.5H/Nu (——), z = H/Nu (– – –), z = H − H/Nu (- - -) and z = H − 0.5H/Nu
(− · −) from the top plate.

Γ =1 at different distances from the top plate. Comparing the p.d.f. of the plume local
heat flux for different distances from the top plate and different Rayleigh numbers
(figure 12b, e) we conclude that the range of possible values of the plume local heat
flux increases with increasing Rayleigh number and while moving away from the plates
towards the bulk. The values of the plume thermal dissipation rate (figure 12c, f )
generally decrease with increasing distance from the considered cross-section to the
nearest horizontal boundary of the domain.

In order to estimate quantitatively the contribution of the sheet-like thermal plumes
to the mean heat transport, we consider the functions 〈θ ϑ〉t,Sz

and 〈εθ ϑ〉t,Sz
presented

in figure 14 for the case Ra = 2 × 109 and different distances from the top plate.
These graphs illustrate which temperatures contribute more to the mean heat flux
and to the mean thermal dissipation rate, both averaged in time and over considered
horizontal cross-sections. For a fixed horizontal cross-section Sz, the functions 〈θ ϑ〉t,Sz

and 〈εθ ϑ〉t,Sz
, averaged for all temperatures T ∈ [−0.5; 0.5], give the mean heat

flux (the Nusselt number) and the mean thermal dissipation rate, respectively. In
contrast to the mean heat flux, the mean thermal dissipation rate depends strongly
on the distance from the nearest horizontal plate and the following relation holds
〈εθ〉t,z=0 > 〈εθ〉t,z=H/2Nu , as was proved analytically in Shishkina & Wagner (2006).

To calculate the contribution of the sheet-like thermal plumes to the mean heat
flux and the mean thermal dissipation rate close to the top plate, we should average,
respectively, 〈θ ϑ〉t,Sz

and 〈εθ ϑ〉t,Sz
over the temperature interval [−0.5; T −

thr ], where

T −
thr is the temperature threshold used to extract the sheet-like plumes. Although the

sheet-like thermal plumes account for the dominating part of the mean heat flux, the
largest part of the the mean thermal dissipation rate corresponds to the turbulent
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Figure 13. Probability density functions of the following characteristics of the sheet-like
thermal plumes: (a, b, d, e) horizontal and (c, f ) vertical components of the velocity; logarithms
of the absolute values of the (g, h, j, k) horizontal and (i, l) vertical components of the
vorticity, evaluated for Ra = 2 × 109 (a–c, g–i) and Ra = 2 × 1010 (d–f, j–l), Pr =5.4, Γ = 1
and distances z =0.5H/Nu (——), z = H/Nu (– – –), z = H −H/Nu (- - -) and z =H −0.5H/Nu
(– · –) from the top plate.

background. In particular, in the case Ra =2 × 109 the sheet-like thermal plumes
cover less than 21% of the horizontal cross-section at the border between the upper
thermal boundary layer and the bulk, while they account for about 84% of the
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Figure 14. Temperature contributions to (a) the mean heat flux and to (b) the mean thermal
dissipation rate, evaluated for Ra = 2 × 109, Pr = 5.4, Γ = 1 and distances z = 0.5H/Nu (——),
z = H/Nu (– – –), z = H/2 (——• ), z =H (1 − 1/Nu) (- - -) z =H (1 − 0.5/Nu) (– · –) from the
top plate.

Ra 2 × 109 2 × 109 2 × 1010 2 × 1010

z |Sz| 〈θ〉t,Sz
|Sz| 〈θ〉t,Sz

0.5H/Nu 20.9 83.9 20.8 67.3
H/Nu 11.3 75.6 12.5 63.0

Table 2. Portions (in %) of the area of a horizontal cross-section Sz, covered by the sheet-like
thermal plumes and the mean contributions (in %) of the sheet-like thermal plumes to the
mean heat flux θ averaged in time and over the horizontal cross-sections at the distances
z = 0.5H/Nu and z = H/Nu from the top plate, evaluated for Ra = 2 × 109 and 2 × 1010,
Pr = 5.4, Γ = 1.

mean heat flux and 29% of the mean thermal dissipation rate (see also table 2 for
Ra = 2 × 109 and 2 × 1010).

6. Conclusions
Sheet-like thermal plumes which develop in turbulent Rayleigh–Bénard convection

of water with Prandtl number Pr = 5.4 in a cylindrical container with the aspect
ratio Γ = 1 were studied using the data of the direct numerical simulations for the
Rayleigh number Ra =2 × 109 and well-resolved large-eddy simulations for the case
Ra = 2 × 1010.

The choice of the temperature threshold to extract the sheet-like plumes was
based on the analysis of the dependences on the temperature of the local heat
flux, thermal dissipation rate and spatial components of the velocity and vorticity
fields in different horizontal cross-sections. These time-averaged dependencies on the
temperature were called the conditionally averaged quantities. It was shown that
the optimum temperature threshold to extract the sheet-like thermal plumes at the
borders between the thermal boundary layers and the bulk is the point of the
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maximum of the conditionally averaged thermal dissipation rate. Since high values
of the conditionally averaged absolute values of the horizontal vorticity component
also indicate the borders of the sheet-like thermal plumes, the maximum value of the
conditionally averaged absolute value of the horizontal vorticity component can be
used as the temperature threshold to extract the thermal plumes in the bulk.

The formulae to compute the sheet-like plume curvature, thickness, length and
aspect ratio were introduced. Based on the DNS and LES data and the above
formulae, the probability density functions of the geometrical properties of the sheet-
like thermal plumes such as plume area, diameter, curvature, thickness, length and
aspect ratio together with the probability density functions of physical properties of
the plumes like temperature, heat flux, thermal dissipation rate, velocity and vorticity
were investigated. In particular, it was shown that with growing distance from the
nearest horizontal plate the sheet-like thermal plume area, diameter and thermal
dissipation rate generally decrease, while the sheet-like thermal plume curvature and
local vertical heat flux increase. The mean thickness of the sheet-like thermal plumes
is approximately equal to the thickness of the thermal boundary layers, i.e. 0.5H/Nu .

It was shown that the sheet-like plumes are characterized by relatively large
absolute values of the vertical velocity component, local heat flux and vertical vorticity
component. The borders of these plumes are indicated by large values of the thermal
dissipation rate and the norm of the vorticity. Predominantly horizontal directions of
the vorticity vectors which point along the elongated sheet-like thermal plumes also
characterize the borders of these plumes.

The sheet-like thermal plumes play an important role in heat transport. They
correspond to a relatively small part of the area (≈21%) of the horizontal cross-
section at a distance z =0.5H/Nu from the top or bottom plates, which separate the
thermal boundary layers and the bulk, while accounting for the dominating part of
the mean heat flux (≈84% in the case for Ra =2 × 109).

Extremely high values of the local heat flux and high absolute values of the
vertical velocity and the vertical vorticity components are obtained in the regions
where the sheet-like plumes merge and convolute. Fluid swirling at these places forms
the stems of the mushroom-like thermal plumes which develop in the bulk of the
Rayleigh–Bénard cell.

The authors are grateful to Professor K.-Q. Xia and Professor A. Thess for helpful
discussions.
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